Skip to contents

Provides an integer value for the number of duplicates found within a variable The function accepts an input from a dplyr pipe "%>%" and outputs the results as a tibble.

eg. example_data %>% dup(variable)

Usage

dup(data, var = NULL)

Arguments

data

The data frame or tibble

var

The variable to assess

Value

A tibble with the number and percentage of duplicate values found, and the number of missing values (NA), together with percentages.

Examples

example_data <- dplyr::tibble(id = 1:200, age = round(rnorm(200, mean = 30, sd = 50), digits=0))
example_data$age[sample(1:200, size = 15)] <- NA  # Replace 15 values with missing.
dup(example_data, age)

#> # A tibble: 1 × 7
#>   Variable     n n_unique n_duplicate percent_duplicate n_missing
#>   <chr>    <int>    <int>       <int>             <dbl>     <int>
#> 1 age        200      116          69              37.3        15
#> # ℹ 1 more variable: percent_missing <dbl>
# It is also possible to pass a whole database to dup and it will explore all variables.
example_data <- dplyr::tibble(age = round(rnorm(200, mean = 30, sd = 50), digits=0),
                              sex = sample(c("Male", "Female"), 200, TRUE),
                              favourite_colour = sample(c("Red", "Blue", "Purple"), 200, TRUE))
example_data$age[sample(1:200, size = 15)] <- NA  # Replace 15 values with missing.
example_data$sex[sample(1:200, size = 32)] <- NA  # Replace 32 values with missing.
dup(example_data)

#> # A tibble: 3 × 7
#>   Variable             n n_unique n_duplicate percent_duplicate n_missing
#>   <chr>            <int>    <int>       <int>             <dbl>     <int>
#> 1 age                200      115          70              37.8        15
#> 2 sex                200        2         166              98.8        32
#> 3 favourite_colour   200        3         197              98.5         0
#> # ℹ 1 more variable: percent_missing <dbl>