Creates a "n x n" cross-tabulation of two categorical variables, with row percentages. Includes options for adding frequentist hypothesis testing.
The function accepts an input from a dplyr pipe "%>%" and outputs the results as a tibble.
eg. example_data %>% tab(variable1, variable2)
Examples
example_data <- dplyr::tibble(id = 1:100, group1 = sample(c("a", "b", "c", "d"),
size = 100, replace = TRUE),
group2= sample(c("male", "female"),
size = 100, replace = TRUE))
example_data$group1[sample(1:100, size = 10)] <- NA # Replace 10 with missing
tab(example_data, group1, group2)
#> # A tibble: 5 × 5
#> group1 N_female N_male Percent_female Percent_male
#> <chr> <int> <int> <dbl> <dbl>
#> 1 a 9 11 45 55
#> 2 b 7 15 31.8 68.2
#> 3 c 15 16 48.4 51.6
#> 4 d 13 4 76.5 23.5
#> 5 NA 5 5 50 50
summary <- tab(example_data, group1, group2) # Save summary statistics as a tibble.